In this post; you will get Official Syllabus, Previous Year Question Papers (PYQs), Booklist, Toppers Strategy and some popular notes.
1.(a) Mechanics of Particles:
Laws of motion; conservation of energy and momentum, applications to rotating frames, centripetal and Coriolis accelerations; Motion under a central force; Conservation of angular momentum, Kepler’s laws; Fields and potentials; Gravitational field and potential due to spherical bodies, Gauss and Poisson equations, gravitational self-energy; Two-body problem; Reduced mass; Rutherford scattering; Centre of mass and laboratory reference frames.
(b) Mechanics of Rigid Bodies:
System of particles; Centre of mass, angular momentum, equations of motion; Conservation theorems for energy, momentum and angular momentum; Elastic and inelastic collisions; Rigid Body; Degrees of freedom, Euler’s theorem, angular velocity, angular momentum, moments of inertia, theorems of parallel and perpendicular axes, equation of motion for rotation; Molecular rotations (as rigid bodies); Di and tri-atomic molecules; Precessional motion; top, gyroscope.
(c) Mechanics of Continuous Media:
Elasticity, Hooke’s law and elastic constants of isotropic solids and their inter-relation; Streamline (Laminar) flow, viscosity, Poiseuille’s equation, Bernoulli’s equation, Stokes’ law and applications.
(d) Special Relativity:
Michelson-Morely experiment and its implications; Lorentz transformations, length contraction, time dilation, addition of relativistic velocities, aberration and Doppler effect, mass-energy relation, simple applications to a decay process. Four dimensional momentum vector; Covariance of equations of physics.
2. Waves and Optics:
(a) Waves:
Simple harmonic motion, damped oscillation, forced oscillation and resonance; Beats; Stationary waves in a string; Pulses and wave packets; Phase and group velocities; Reflection and refraction from Huygens’ principle.
(b) Geometrial Optics:
Laws of reflection and refraction from Fermat’s principle; Matrix method in paraxial optics-thin lens formula, nodal planes, system of two thin lenses, chromatic and spherical aberrations.
(c) Interference:
Interference of light-Young’s experiment, Newton’s rings, interference by thin films, Michelson interferometer; Multiple beam interference and Fabry Perot interferometer.
(d) Diffraction:
Fraunhofer diffraction- single slit, double slit, diffraction grating, resolving power; Diffraction by a circular aperture and the Airy pattern; Fresnel diffraction: half-period zones and zone plates, circular aperture.
(e) Polarisation and Modern Optics:
Production and detection of linearly and circularly polarised light; Double refraction, quarter wave plate; Optical activity; Principles of fibre optics, attenuation; Pulse dispersion in step index and parabolic index fibres; Material dispersion, single mode fibres; Lasers-Einstein A and B coefficients. Ruby and He-Ne lasers. Characteristics of laser light-spatial and temporal coherence; Focusing of laser beams. Three-level scheme for laser operation; Holography and simple applications.
3. Electricity and Magnetism:
(a) Electrostatics and Magnetostatics:
Laplace and Poisson equations in electrostatics and their applications; Energy of a system of charges, multipole expansion of scalar potential; Method of images and its applications. Potential and field due to a dipole, force and torque on a dipole in an external field; Dielectrics, polarisation. Solutions to boundary-value problems-conducting and dielectric spheres in a uniform electric field; Magnetic shell, uniformly magnetised sphere; Ferromagnetic materials, hysteresis, energy loss.
(b) Current Electricity:
Kirchhoff’s laws and their applications. Biot-Savart law, Ampere’s law, Faraday’s law, Lenz’ law. Self-and mutual- inductances; Mean and rms values in AC circuits; DC and AC circuits with R, L and C components; Series and parallel resonance; Quality factor; Principle of transformer.
4. Electromagnetic Waves and Blackbody Radiation:
Displacement current and Maxwell’s equations; Wave equations in vacuum, Poynting theorem; Vector and scalar potentials; Electromagnetic field tensor, covariance of Maxwell’s equations; Wave equations in isotropic dielectrics, reflection and refraction at the boundary of two dielectrics; Fresnel’s relations; Total internal reflection; Normal and anomalous dispersion; Rayleigh scattering; Blackbody radiation and Planck ’s radiation law- Stefan-Boltzmann law, Wien’s displacement law and Rayleigh-Jeans law.
5. Thermal and Statistical Physics:
(a) Thermodynamics:
Laws of thermodynamics, reversible and irreversible processes, entropy; Isothermal, adiabatic, isobaric, isochoric processes and entropy changes; Otto and Diesel engines, Gibbs’ phase rule and chemical potential; Van der Waals equation of state of a real gas, critical constants; Maxwell-Boltzmann distribution of molecular velocities, transport phenomena, equipartition and virial theorems; Dulong-Petit, Einstein, and Debye’s theories of specific heat of solids; Maxwell relations and application; Clausius-Clapeyron equation. Adiabatic demagnetisation, Joule-Kelvin effect and liquefaction of gases.
(b) Statistical Physics:
Macro and micro states, statistical distributions, Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Distributions, applications to specific heat of gases and blackbody radiation; Concept of negative temperatures.
1. Quantum Mechanics:
Wave-particle duality; Schroedinger equation and expectation values; Uncertainty principle; Solutions of the one-dimensional Schroedinger equation for free particle (Gaussian wave-packet), particle in a box, particle in a finite well, linear harmonic oscillator; Reflection and transmission by a step potential and by a rectangular barrier; Particle in a three dimensional box, density of states, free electron theory of metals; Angular momentum; Hydrogen atom; Spin half particles, properties of Pauli spin matrices.
2. Atomic and Molecular Physics:
Stern-Gerlach experiment, electron spin, fine structure of hydrogen atom; L-S coupling, J-J coupling; Spectroscopic notation of atomic states; Zeeman effect; Franck-Condon principle and applications; Elementary theory of rotational, vibrational and electronic spectra of diatomic molecules; Raman effect and molecular structure; Laser Raman spectroscopy; Importance of neutral hydrogen atom, molecular hydrogen and molecular hydrogen ion in astronomy. Fluorescence and Phosphorescence; Elementary theory and applications of NMR and EPR; Elementary ideas about Lamb shift and its significance.
3. Nuclear and Particle Physics:
4. Solid State Physics, Devices and Electronics:
Table of Content Prelims Result 2024UPSC Prelims Result 2024 AnnouncementCheck Your UPSC Prelims Result 2024The…
Get a detailed Urdu Literature (Optional) Syllabus, collection of Previous Year Question(PYQ) Papers, Booklist, Topper…
Get a detailed Telugu Literature (Optional) Syllabus, collection of Previous Year Question(PYQ) Papers, Booklist, Topper…
Get a detailed Tamil Literature Optional Syllabus, collection of Previous Year Question(PYQ) Papers, Booklist, Topper…
Get a detailed Sindhi Literature (Optional) Syllabus, collection of Previous Year Question(PYQ) Papers, Booklist, Topper…
Get a detailed Santhali Literature (Optional) Syllabus, collection of Previous Year Question(PYQ) Papers, Booklist, Topper…